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A B S T R A C T

Alzheimer's disease (AD) is one of the most common causes of dementia and is characterized by gradual loss in
memory, language, and cognitive function. The hallmarks of AD include extracellular amyloid deposition, in-
tracellular neuronal fiber entanglement, and neuronal loss. Despite strenuous efforts toward improvement of AD,
there remains a lack of effective treatment and current pharmaceutical therapies only alleviate the symptoms for
a short period of time. Interestingly, some progress has been achieved in treatment of AD based on mesenchymal
stem cell (MSC) transplantation in recent years. MSC transplantation, as a rising therapy, is used as an inter-
vention in AD, because of the enormous potential of MSCs, including differentiation potency, immunoregulatory
function, and no immunological rejection. Although numerous strategies have focused on the use of MSCs to
replace apoptotic or degenerating neurons, recent studies have implied that MSC-immunoregulation, which
modulates the activity state of microglia or astrocytes and mediates neuroinflammation via several transcription
factors (NFs) signaling pathways, may act as a major mechanism for the therapeutic efficacy of MSC and be
responsible for some of the satisfactory results. In this review, we will focus on the role of MSC-im-
munoregulation in MSC-based therapy for AD.

1. Introduction

Alzheimer's disease (AD) is a chronic neurodegenerative disease of
the brain characterized by progressive memory loss and other cognitive
dysfunctions. In 2015, the Alzheimer's Association International
Conference estimated that approximately 47 million people worldwide
suffered from dementia, and that the number could exceed 131 million
people by 2050 as populations age [1]. Currently, cholinesterase in-
hibitors like donepezil and rivastigmine and the N-methyl-D-aspartate
(NMDA) receptor inhibitor memantine are mainly used as interventions
in AD. Although these inhibitors can improve cognitive function in
patients with AD, they consistently show side effects and toxicity after
long-term use. To address these problems, stem cell therapy, especially
mesenchymal stem cell (MSC) transplantation, has received much more
attention in recent years. In view of their many advantages, including
easy accessibility, immunoregulatory function, and no immunological
rejection, MSCs have become extensively utilized in AD treatment, and

have produced a growing number of fruitful results [2–4]. However, the
underlying mechanisms of MSC therapy for AD remain unclear. Neu-
ronal loss in AD is partly compensated by MSC transplantation, and this
may be one of the mechanisms for MSC therapy in AD [5]. Never-
theless, the mechanisms for the compensation remain largely unclear.
Importantly, neuroinflammation frequently occurs alongside the neu-
ropathological hallmarks of AD, and MSCs may directly or indirectly
regulate the state of astrocytes or microglia and depend on TFs sig-
naling pathways to adjust the balance of inflammatory cytokines, in-
cluding both pro-inflammatory and anti-inflammatory cytokines [6,7],
thereby producing significant effects of MSC therapy in AD. Given that
neuroinflammation in the brain is considered one of the major causes of
the cognitive symptoms in AD [8], this inflammation may play a pivotal
role in MSC therapy for AD. This review will focus on the role of MSC-
mediated neuroinflammation in the treatment of AD.
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2. MSC-based therapies in AD

2.1. Gene mutation and other genetic information cause AD

Less than 5% of AD cases are early onset and familial, and such cases
usually occur before the age of 65 years and arise from genetic al-
terations, such as pathogenic mutations in the amyloid-β precursor
protein (AβPP), presenilin 1 (PSEN1), and presenilin 2 (PSEN2) genes
[96]. The majority of AD cases are late onset and sporadic, and are
believed to be caused by multiple factors such as aging, nutrition, and
lifestyle, as well as chronic metabolic disorders [9] (Fig. 1).

Familial and sporadic AD share the same neuropathological hall-
marks in the brain, including extracellular amyloid β-peptide (Aβ)
plaques, intraneuronal neurofibrillary tangles (NFTs), and synaptic/
neuronal loss. In addition, the neuropathological hallmarks of AD are
often accompanied by neuroinflammation, which is intended to protect
the body, but also can contribute to aggravation of damage when it
becomes excessive [10]. In the five familial AD (5 × FAD) mutations
model in mice, reduction of microglia activation by galectin-3 inhibi-
tion or deletion slowed AD progression and improved cognitive beha-
viors [11]. Meanwhile, the treatment of neurotropin that restrained
astrocyte activation, reduced pro-inflammatory cytokines (interleukin
(IL)-1β, IL-6, tumor necrosis factor (TNF)-α) expression, decreased Aβ
accumulation, and improved cognitive deficits in APP/PS1 mice [12].
Therefore, modulation of neuroinflammation may be an effective
method for improvement of AD.

2.2. Different MSC-based therapies used in AD

However, there are currently no effective treatments for AD, al-
though cholinesterase and NMDA receptor inhibitors can improve
cognitive function in AD patients in the short term. With the failure to
develop new drugs for AD, the number of studies on MSC transplan-
tation has dramatically increased during the past few years, with no-
table effects on AD [13–15]. MSC is multipotent stem cells with prop-
erties of self-renewal, differentiation, and immunoregulation [16], just
so which can be adopted for stem cell therapy in AD [17,18]. They is
easily isolated from bone marrow [19], adipose tissue [20], amniotic
fluid [21], umbilical cord [22], placenta [23], and dental pulp [24]
without serious ethical or technical problems. Therefore, MSC-derived
from various sources including human umbilical cord-derived MSC
[25,26], bone marrow-derived MSC [27,28], adipose-derived MSC
[29–31], and amniotic-derived MSC [32,33] has recently received in-
creasing attention as a promising cell source for stem cell therapy in AD
(Tables 1, 2).

3. AD and inflammation

The main pathological features of AD include Aβ plaques and in-
tracellular NFTs (Fig. 1). Recently, emerging findings related to the
initial steps of neuroinflammation have been considered late-phase
responses to pathobiological events in AD [34]. Astrocytes and micro-
glia, the main immune cells in the brain, play significant roles in neu-
roinflammation [35,97].

Aβ plaques are potent activators of microglia, which respond to
cerebral amyloidosis by chronic pro-inflammatory response. Activated
microglia are observed in AD, and characterized by short, thickened,
and less ramified processes. Microglia have been shown to exert pro-
inflammatory and anti-inflammatory effects. Many studies including
those on the post-mortem human brain, neuroimaging analyses in AD
patients, as well as transgenic rodent models have provided obvious
evidence that microglia are attracted to nearby senile plaques in AD
[36,37]. In addition, Aβ can activate microglia to produce cytokines
and neurotoxins, thereby promoting neurodegeneration [38,39]. In
contrast, another report suggested that microglia could secrete neuro-
trophic agents and eliminate toxic Aβ by phagocytosis, thus playing a
neuroprotective role in AD [40]. The same study observed the existence
of an age-dependent phenotypic change in microglial activation within
the hippocampus of an AD mouse model from an alternative activation
state (IL-4 expression) to a classic cytotoxic phenotype (IL-1β and TNF-
α expression) [40]. Interestingly, recent work on an ischemic mouse
model confirmed that microglia could switch phenotypes to become
“alternatively activated” such that anti-inflammatory effects were pre-
dominant, and that the switch was promoted by adult stem cell trans-
plantation [41]. The activated microglia were located near Aβ deposits,
and their morphology changed from ramified to ameboid through the
action of microglial phagocytosis [42].

Astrocytes are the most abundant type of glial cells in the central
nervous system (CNS), and have many functions, including main-
tenance of ionic balance, blood-brain barrier (BBB), participation in
synaptogenesis, neurogenesis, and synaptic transmission. Astrogliosis
occurs in AD, and the degree of astrogliosis alterations is associated
with cognitive impairment. Astrocytes express several receptors for
chemokines and inflammatory cytokines including those like IL-1β and
TNF-α [43]. IL-1β and TNF-α can activate astrocytes, which are im-
portant for Aβ clearance and degradation [44]. On the contrary, amy-
loid-β precursor protein (AβPP) can induce astrogliosis and neuronal
death [45]. Moreover, astrocytes in AD induce deposition of Aβ, which
aggravates the extent of AD pathology [46]. It is possible that the re-
cruited astrocytes are involved in neuroinflammation and express in-
ducible nitric oxide synthase (iNOS), resulting in NO-mediated toxicity.
Likewise, observations of activated astrocytes in AD patients and

Fig. 1. Dynamic transformation of neuroinflammation in AD
patients and healthy individuals. Healthy individuals show
homeostasis, comprising a dynamic balance of anti-in-
flammation and pro-inflammation. The majority of AD cases
are believed to be caused by multiple factors, including aging,
nutrition, poor education, lifestyle, and chronic metabolic
disorders. More importantly, the homeostasis of neuroin-
flammation becomes disrupted in AD patients, accompanied
by Aβ plaques, NFTs, and neuronal loss. However, MSC
therapy can rescue the homeostasis of neuroinflammation,
and return the state to a healthy condition.
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animal models further indicate a neuroinflammatory role of astrocytes
in AD [47]. Briefly, neuroinflammation plays a significant role in the
pathogenesis of AD, especially with respect to inflammation that acti-
vates microglia and astrocytes involved in AD pathogenesis.

4. MSC therapy for AD: microglia-mediated neuroinflammation

Because of their easy accessibility, lack of ethical concerns, and no
immune rejection, MSCs have enormous potential for AD therapy.
However, the underlying mechanisms of MSC therapy for AD require
further exploration. MSCs have been transplanted into different animal
models of AD (Table 1) and patients with AD (Table 2), and shown to
play an immunomodulatory role in AD development by microglia [48]
(Fig. 2).

For example, systemic transplantation of human umbilical cord
blood-derived mesenchymal stem cells (hUCB-MSCs) into APP/PS1
transgenic mice decreased the level of interferon-γ (IFN-γ) (pro-in-
flammatory cytokine), increased the levels of IL-10 and transforming
growth factor (TGF)-β1 (anti-inflammatory cytokines) in the peripheral
plasma, significantly ameliorated the cognition defects, and reduced Aβ
plaque deposition as well as soluble Aβ, which may be related to acti-
vation of microglia [48]. Importantly, alternatively activated microglia
are associated with Aβ plaques. The effect of hUCB-MSCs on reducing
Aβ accumulation is likely attributed to inhibition of β-site APP-cleaving
enzyme 1 (BACE1) expression via immunomodulation. Aβ is generated
from APP, which is cleaved by BACE1. Placenta-derived MSCs (PD-
MSCs) were reported to attenuate BACE1 expression as well as γ-se-
cretase activity, and improve cognitive impairment in an Aβ1–42-infused
mouse model, which might result from the activated microglia [49]. In
addition, the mechanisms of MSC therapy for AD may involve regula-
tion of pro-inflammatory and anti-inflammatory cytokines through ac-
tivated microglia. Previous studies showed that hUCB-MSC transplan-
tation into APP/PS1 double-transgenic mice significantly reduced the
levels of Aβ, BACE1, and Tau hyperphosphorylation and improved
spatial learning and memory defects by up-regulating anti-in-
flammatory cytokines (IL-4, IL-10, TGF-β) and down-regulating pro-
inflammatory cytokines (IL-1β, TNF-α) through activation of microglia
[32,48,50,51]. In particular, MSC therapy promoted an increase in IL-4,
which may induce microglia to produce insulin-like growth factor
(IGF)-1 [52], reduce Aβ toxicity [53,54], and enhance Aβ phagocytosis
[53]. MSCs transplanted into an AD model triggered microglia to be-
come activated and convert into an amoeboid shape, and subsequently
reach the area of inflammation [55].

Activated microglia have two phenotypes: M1 (classically activated)
and M2 (alternatively activated). The terms M1 and M2 originally in-
dicated macrophages [56,57], but can also be used for microglia, al-
though microglia have more than just two activity states [58]. M1
microglia usually produce massive amounts of pro-inflammatory cyto-
kines including IL-1β, IL-12, TNF-α, and iNOS, which often worsen the
CNS damage [59]. M2 microglia respond to IL-4, IL-10, IL-13, and TGF-
β, which have an anti-inflammatory impact on AD [3]. Excessive
amounts of pro-inflammatory cytokines usually act for AD develop-
ment. For example, a neutralizing antibody for IL-17 (pro-inflammatory

cytokine) prevented the increase in pro-inflammatory mediators and
improved memory function in the Aβ1–42 mouse model [60]. Interest-
ingly, transplantation of MSC line B10 cells decreased Aβ deposition
and improved neurological function, but increased IL-1β mRNA and
protein expression in an amyloid β-infused rat model [61]. Conversely,
anti-inflammatory cytokines are considered to favor AD improvement
[62]. Thus, it is imperative that MSCs regulate activation of microglia
from M1 phenotype to M2 phenotype. Interestingly, alternatively ac-
tivated microglia (M2 phenotype) may be activated by a pro-in-
flammatory cytokine (IL-β), thereby contributing to the suppression of
pro-inflammatory cytokines [10,63]. Activated microglia may switch
from M2 phenotype to M1 phenotype in AD [64,65]. Specifically, the
microglia phenotype switched from a pro-inflammatory role to an anti-
inflammatory role can be facilitated by the PI3/Akt pathway [98]. In
addition, the modulatory effect of microglia polarization (from M1 state
to M2 state) was partly mediated by LRP-1 receptor [99], NLRP3 in-
flammasome suppression [100], and steroid hormones (17β-estradiol,
progesterone) [101]. Hence, the switch between M1 phenotype and M2
phenotype may be a dynamic process with a significant role in neu-
roinflammation [10].

A possible mechanism of MSC-based therapy for AD may be that
MSCs regulate neuroinflammation by activation of microglia, and the
activated microglia subsequently alleviate pathological features such as
Aβ deposits and Tau hyperphosphorylation, and rescue the spatial
learning and memory deficits.

5. MSC therapy for AD: astrocyte-mediated neuroinflammation

Recently, it was reported that exosomes derived from hypoxia-pre-
conditioned MSCs and administered to APP/PS1 mice decreased
proinflammatory cytokines (TNF-α, IL-1β) and increased anti-in-
flammatory cytokines (IL-4, IL-10) by modulating the activation of as-
trocytes, reduced Aβ plaque deposition, and finally rescued the cogni-
tion and memory impairments [66]. Likewise, brain-derived
neurotrophic factor (BDNF)-modified human umbilical cord mesench-
ymal stem cells transplanted into an AD rat model enhanced the acti-
vation of astrocytes, reduced Aβ expression, and improved spatial
learning and memory abilities [2]. Thus, MSCs may participate in
neuroinflammation progression by regulating the state of astrocytes in
AD, and may be helpful for AD therapy (Fig. 3).

Astrocytes comprise a specific cell type with a star-shaped mor-
phology resembling inactivated microglia that are surrounded by
nearby neurons and blood vessels, and have many important functions
including metabolic effects [67] and modulatory effects on the neuronal
microenvironment [68] under physiological conditions. Nevertheless, a
large number of activated astrocytes have been found adjacent to Aβ
plaques [69], supporting the concept that Aβ plaques can stimulate
astrocytes, and that activated astrocytes, which regulate inflammatory
cytokines, are involved in the neuropathology of AD, suggesting a
complicated interaction between activated astrocytes and AD devel-
opment [69]. Activated astrocytes are associated with NFTs, as another
pathological feature of AD. For instance, the number of NFTs increases
as the number of activated astrocytes increases [70], suggesting that

Table 1
Evaluation of MSCs therapy in AD model.

Stem cells Model Way Functional evaluation Molecular mechanism Source

hUBC-MSC APP/PS1, 5 × FAD Intracardiac injection MWM Activated microglia and inflammatory factors
[18,92,93]

Umbilical cord

BMSC APP/PS1 Hippocampal injection MWM Activation of microglia [42,51,94,95] Bone marrow
ADSC APP/PS1 Hippocampal injection MWM, NOR Anti-inflammatory cytokines [29] Adipose tissue
AMSC APP/PS1, APPswe,

3XTg-AD
Hippocampal injection, intravenous
injection

MWM, light/dark transition
test

Immunomodulatory [32,33] Amniotic fluid

MWM: Morris water maze; NOR: new object recognition; hUBC-MSC: human umbilical cord-derived mesenchymal stem cells; BMSC: bone marrow-derived me-
senchymal stem cells; ADSC: adipose tissue-derived mesenchymal stem cells; AMSC: amniotic fluid-derived mesenchymal stem cells.
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activated astrocytes may lead to NFT formation and subsequently ag-
gravate AD progress. However, many studies have confirmed that
MSCs-derived from various tissues can be utilized for intervention in
AD, and achieved some positive outcomes, specifically that MSCs can

reduce Aβ plaque deposition [71] as well as NFT formation [13,72],
and subsequently improve cognitive defects [15,73]. However, it is
important to note that the mechanisms of MSC-based therapy for AD
remain to be fully elucidated. Therefore, it is necessary to clarify

Fig. 2. Effects of MSC-immunomodulated microglia on AD progression. MSCs affect the activity state of microglia, M1 (classically activated) or M2 (alternatively
activated), in autocrine or paracrine manners, and then immunomodulate the homeostasis of neuroinflammation for a return to the normal healthy condition.

Fig. 3. Effect of MSC-immunomodulated astrocytes on AD progression. MSCs affect the activity state of astrocytes by autocrine or paracrine manners, and the
activated astrocytes immunomodulate the homeostasis of neuroinflammation, and facilitate a return to the normal healthy condition.
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whether MSC-based therapy for AD exerts important effects by mod-
ulating the state of astrocytes. Recently, it was reported that MSC
transplantation promoted the recovery of learning and memory func-
tion in neonatal rats with hypoxic-ischemic brain damage by reducing
the proliferation of reactive astrocytes [74]. Based on these observa-
tions, we propose the hypothesis that exogenous MSCs may play a re-
storative role in AD by suppressing the activation of astrocytes. More-
over, once MSCs are applied to the microenvironment of injured tissues,
they can produce various factors like TGF-β [75] and IGF-1 [76] that
trigger the activation of astrocytes. Subsequently, the activated astro-
cytes can clear Aβ plaque deposition [44] and which also may secret
TGF-β and IGF-1 as neuroprotective factors [104,105].

However, the activation of astrocytes has both pros and cons. On the
one hand, excessive activation of astrocytes can lead to astrogliosis
colocalized with amyloid plaques in AD [77] or glial scar formation
after CNS damage [78], which hinder synaptic communication and
axonal regeneration. On the other hand, moderate activation of astro-
cytes may be favorable for the improvement of AD. Astrocytes may be
involved in the recognition and modulation of immune and in-
flammatory processes in AD [79], given that they express several re-
ceptors for inflammatory cytokines like IL-1β, TNF-α, and TGF-β that
can activate astrocytes [43,80]. Activated astrocytes participate in Aβ
clearance and degradation similar to phagocytic microglia [44]. In
addition, MSCs are closely associated with Toll-like receptors (TLRs), by
which MSCs could secret IL-10 and TGF-β1 [81,82]. Astrocytes can also
express innate immunity receptors like TLRs, and when inflammatory
cytokines secreted by MSCs activate TLRs, like TLR3, they trigger a
comprehensive neuroprotective response by enhancing the production
of anti-inflammatory cytokines, such as IL-9, IL-10, and IL-11, and
downregulating pro-inflammatory cytokines like IL-12 [83]. Thus,
MSCs may rescue AD by paracrine effects involving secreted in-
flammatory cytokines or growth factors to modulate the activation of
astrocytes. Finally, MSCs can directly or indirectly modulate the state of
astrocytes or microglia, and thus their manners of modulation are di-
verse.

In short, astrocytes or microglia modulated by MSCs may play more
than individual roles. In AD, Aβ plaques are likely to activate astrocytes
or microglia. It is possible that activation of microglia plays an im-
portant role in activation of astrocytes. It is likely that activation of
astrocytes leads to activation of microglia. Therefore, the interaction
between activation of microglia and activation of astroglia may be

involved in the pathogenesis of AD. Similarly, the mechanism of MSC-
based therapy for AD has complex modes by modulating the activation
of microglia or astroglia.

6. MSC therapy for AD: transcription factors-mediated
neuroinflammation

Transcription factors (TFs), such as nuclear factor-κB (NF-κB) [106],
nuclear factor of activated T-cells (NFAT) [107], hypoxia-inducile
factor (HIF) [108], and nuclear factor-erythroid 2-related factor (Nrf)
[106], play a significant role in the stimulation of inflammatory med-
iators related to neuroinflammation. It been verified that [109,110]
BMSCs can secrete IL-6 and VEGF, which are dependent on the classic
NF-κB pathway. Therefore, MSCs therapy for AD may regulate in-
flammatory response via modulation of TFs signaling pathways. More
important, It have reported that AD-MSCs transplanted into infracted
hearts decreased inflammatory cytokines (TNF-α and IL-6) and in-
creased growth factors through modulation of TLR4/NF-κB and kelch-
like ECH-associated protein 1 (Keap-1)/Nrf-2 signaling pathways [106].
Treatment of hUCB-MSCs with CoCl2 was reported to promote anti-
inflammatory response and increase the expression of microRNA-146a
(miR-146a). However, hypoxia-inducile factor-1α (HIF-1α) silencing
and ERK inhibition abolished CoCl2-induced miR-146a expression,
suggesting that CoCl2 may enhance the immunoregulation capacity of
hUCB-MSCs via the ERK/HIF-1α signaling pathway [108]. Ad-
ditionally, the administration of MSCs in pulmonary hypertension may
suppress the expression of TNF-α by calcineurin (CaN)/NFAT signaling
pathway [107]. Hence, these results indicate that MSCs are likely to
regulate directly neuroinflammation by means of several TFs signaling
pathways (Fig. 4).

7. Outlook

MSCs possess huge potentials for AD-based therapy since they can
be readily obtained from various tissues including umbilical cord, bone
marrow, adipose tissue, and amniotic fluid (Table 1), have no immune
rejection, and exhibit multiple differentiation potentials as well as im-
munoregulatory properties compared with embryonic stem cells (ESCs),
induced pluripotent stem cells (iPSCs), and neural stem cells [84]. MSC
transplantation has been applied in various AD models (Table 1) and
clinical trials (Table 2), all which showed positive effects to a certain

Fig. 4. Effect of MSC-immunomodulated
via NFs pathways on AD progression. MSCs
modulate inflammatory cytokines through
NFs signaling pathways, which im-
munomodulate the homeostasis of neu-
roinflammation, and facilitate a return to
the normal healthy condition. Abbreviation:
NFs: transcription factors signaling path-
ways.
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extent, although the mechanisms of MSC therapy for AD remain largely
unknown. Currently, the most widely accepted hypothesis is that MSCs
secrete neurotrophic factors like BDNF [33], nerve growth factor (NGF)
[72], and vascular endothelial growth factor (VEGF) [85] to exert
neuroprotective effects on AD. Certainly, MSCs can differentiate into
neurons, which substitute for apoptotic or degenerative neurons, and
improve the symptoms of AD [86]. Importantly, MSCs can also be
employed to rescue cognitive impairments in AD by modulating neu-
roinflammation, because many studies have revealed that neuroin-
flammation plays a key role among the mechanisms of MSC therapy for
AD [87,88]. This review has provided detailed information on ways to
modulate the role of neuroinflammation in MSC therapy for AD.

Clearly, the mechanisms of MSC-based therapy for AD must be es-
tablished before its use in clinical practice. Currently, peripheral ad-
ministration of MSCs (via intravenous or intraperitoneal routes) is not
considered one of the potential treatments for AD, although it can
modulate the immune system globally with some moderate suppression
of neuroinflammation. There are multiple issues for therapeutic ap-
proaches involving peripheral administration of MSCs for AD. However,
administration of MSC-derived extracellular vesicles (EVs) is considered
a better approach than administration of MSCs, because EVs can across
the BBB and target neurons and glia, which protect neurons from da-
mage induced by AD-linked Aβ oligomers, even after peripheral ad-
ministration [89–91,102,103]. Besides, MSC therapy still has various
obstacles, limitations, and unexpected risks for treatment of AD in its
methods and applications. Because MSC therapy is still in the research
stage (Table 2), the gap between knowledge and technology is the main
obstacle to overcome for clinical success and treatment efficacy. In
addition to these considerations, a variety of risk factors have been
investigated, including biological distribution, differentiation type, al-
lograft use, cell purity, and transplantation methods. These risks, lim-
itations, and side effects need to be taken into account before clinical
application of AD can be achieved.

The future of MSC therapy has many problems that scientists need
to explore, and consequently this emerging field has great potentials for
exploitation. The unpleasant fact is that effective treatment is not
available because of the health industry's disastrous processes, which
have a pronounced impact on public health costs. Stem cell research
maintains a bright future for AD treatment. MSC therapy brings AD
patients great hope, and has low immune responses and complications
compared with ESCs or iPSCs. However, the optimal method for MSC
transplantation remains uncertain. Regarding AD research, most of the
work is carried out in animal models (Table 1), especially in con-
sideration of potential translation to patients with AD, which lays the
foundation for pre-clinical research. MSC therapy for AD can be re-
peated, measurable, and cost-effective to the point of easy availability.

8. Conclusions

MSC therapy for AD has great prospects, but is still developing.
There is a large number of pre-clinical studies indicating the theoretical
feasibility, but further studies are required to reveal the potential
therapeutic mechanisms. In this review, we have summarized that
MSCs can participate in treatment of AD pathology to a large extent, by
modulating the role of neuroinflammation in AD. One theory is that
MSC therapy for AD regulates the role of neuroinflammation by ad-
justing the activation of astrocytes, and another is that MSC therapy for
AD regulates the role of neuroinflammation by adjusting the activation
of microglia. Importantly, MSC-mediated neuroinflammation inter-
venes AD progression via TFs signaling pathways. Regardless of whe-
ther MSCs adjust the activity state of microglia or astrocytes and TFs
signaling pathways, they modulate the homeostasis of pro-in-
flammatory and anti-inflammatory biomarkers in AD, and can improve
the symptoms of the disease. Once the mechanism of MSC therapy for
AD has been determined, MSC therapy is very likely to enter into
clinical practice and alleviate the pain of AD patients.
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