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The immunosuppressive potential of mesenchymal stem cells has been extensively

investigated in many studies in vivo and in vitro. In recent years, a variety preclinical

and clinical studies have demonstrated that mesenchymal stem cells ameliorate

immune-mediated disorders, including autoimmune diseases. However, to date

mesenchymal stem cells have not become a widely used therapeutic agent due to safety

challenges, high cost and difficulties in providing long term production. A key mechanism

underpinning the immunomodulatory effect of MSCs is the production of paracrine

factors including growth factors, cytokines, chemokines, and extracellular vesicles (EVs).

MSCs derived EVs have become an attractive therapeutic agent for immunomodulation

and treatment of immune-mediated disorders. In addition to many preclinical studies of

MSCs derived EVs, their beneficial effects have been observed in patients with both acute

graft-vs.-host disease and chronic kidney disease. In this review, we discuss the current

findings in the field of MSCs derived EVs-based therapies in immune-mediated disorders

and approaches to scale EV production for clinical use.

Keywords: extracellular vesicles, microvesicles, immunosuppression, autoimmune diseases, multiple sclerosis,

transplant rejection, type 1 diabetes, graft-vs.-host disease

INTRODUCTION

Mesenchymal stem cells (MSCs) bear great potential not only in regenerative medicine, but they
also interfere with different pathways of the immune response and exhibit immunomodulatory
activity (1, 2). Preclinical and clinical studies both indicate that MSCs have immunosuppressive
activity, including suppression of T- and B-cell proliferation, modulation of regulatory T cell
function maturation and activation, antigen presentation by dendritic cells, decrease secretion
of proinflammatory cytokines and cytotoxicity (3). Up to now MSCs have been exploited in 67
clinical trials (http://clinicaltrials.gov/; accessed April 2019) of inflammation-associated diseases,
autoimmune diseases and transplant rejection (Supplementary Table 1).

The accumulating evidence supports MSCs producing a strong paracrine action on neighboring
cells through a broad range of growth factors, chemokines, cytokines and extracellular vesicles
(EVs) (4). EVs are a heterogeneous population of spherical membrane vesicles, containing
biologically active cargo of molecules (proteins, lipids, mRNA,microRNA, siRNA, miRNA, ssDNA,
dsDNA) deliverable to target cells (5, 6). Due to the fundamental function of EV—mediation
of intercellular communication, they are involved in numerous physiological and pathological
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processes and pathways (7). MSCs derived EVs have been used
to recapitulate some of the biological activity of parent cells,
including stimulation of regeneration in models of renal, heart,
liver and nervous tissue injury (8–12) a function which is
arguable the most prominent function of MSCs.

Due to the genetic instability (13), undesired differentiation
(14, 15), and pulmonary embolism risks (16), the application of
MSCs in a clinical setting is restricted. Cell-free therapy based
on EVs offers a promising alternative to stem cell-based therapy
for inflammation-associated diseases, autoimmune diseases, and
transplant rejection (17–19).

A caveat in pursuing EVs for clinical therapeutic applications
has been the difficulty of producing sufficient yield. Therefore, in
parallel with investigation of biological activity and therapeutic
efficacy, approaches to scale EV production are also underway
(17, 20, 21). Large scale EV production research aims to
generate an industrially feasible approach that retains clinical-
grade purity. As well as alternative approaches to isolate other
EV-like and larger particles (21–23).

MSCs derived EVs are a promising therapeutic instrument
which have advantages over cell therapy. In this review, we
focus on the recent findings of therapeutic application of MSCs
derived EVs for the treatment of immune-mediated disorders
and the perspective application of different methods for large
scale EVs production.

MSCS-BASED IMMUNOSUPPRESSIVE
THERAPY

In vitro and in vivo studies have been used to demonstrate the
MSCs anti-inflammatory and immunomodulatory properties on
both innate (macrophages, NK cells, dendritic cells) and adaptive
immune cells (T-cells, B-cells) (24).

Using blocking antibodies and inhibitors it was shown
that indoleamine 2,3-dioxygenase (IDO) (25), prostaglandin E2
(PGE2) (26), interleukin 10 (IL-10) (27), nitric oxide (NO) (28),
and hepatocyte growth factor (HGF) (29) mediate the inhibitory
action of MSCs on immune cells. The list of soluble factors which
are associated with the immunomodulation capacity of MSCs is
still to be fully elucidated.

The first clear evidence of MSCs immunosuppression of
immune cells was produced in vitro by Aggarwal and Pittenger
(30) by demonstrating human MSCs altered the cytokine
secretion profile of co-cultured dendritic cells (DCs), T cells
(TH1 and TH2), and natural killer (NK) cells to induce a
more anti-inflammatory phenotype. In addition, the number of
regulatory T cells (T-regs) was also increased (30). Successful
immunosuppression of immune cells by MSCs in vitro lead to
increasing the number of in vivo research and preclinical trials.

In more recent studies, MSCs isolated from human umbilical
have been shown to inhibit inflammation in a rodent model of
acute allergic rhinitis (31). Reduced expression of interleukin 4,
tumor necrosis factor alpha (TNF-α), and immunoglobulin E
were detected in the serum of animals treated with MSCs (31).

Similar findings have also been reported in rodent models
of diabetic nephropathy (DN) and rheumatoid arthritis (RA),

within which treatment with MSCs increased the concentration
of anti-inflammatory cytokines (IL-10 in DN and RA and EGF
in DN) This change was accompanied by a decrease in pro-
inflammatory cytokines [IL-6, MCP-1, TNF-α and IL-1β in DN
and of IL-6, TNF-α, TGF-β, NF-κB, toll-like receptor-2, MMP-3,
COMP-1, and RF (rheumatoid factor) in RA] (32, 33).

The effects of MSCs has also been tested in autoimmune
encephalomyelitis (EAE) (the animal model of multiple
sclerosis). Treatment with embryonic stem cell-derived MSCs
in the cynomolgus monkey EAE model reduced the clinical
symptoms of brain lesions and neuronal demyelination (34).

The first clinical trial using bone marrow derived MSCs
was conducted in 2006 at the University of Cambridge
(Supplementary Table 1). As a result of the trial the authors
suggested improvements for the design of future studies to
increase the efficacy of evaluation (35).

These recommendations have led to a growth in clinical
trials in the area of MSCs based treatment of autoimmune
disorders (Supplementary Table 1). China is currently leading
on clinical trials within this field (26.87% of total number of
trials), with a predominance (44.4%) toward the treatment of
type 1 Diabetes (Supplementary Table 1). Trials conducted in
other countries are reviewing MSCs effects in multiple sclerosis
(35.82%), type 1 diabetes (22.39%), and rheumatoid arthritis
(17.91%) (Supplementary Table 1).

Whilst the comparison of the data produced in these trials is
complicated by variations in design (MSCs administration, dose
and regimens). Importantly, to date there have been no reports of
tumor development following MSCs infusion (36, 37).

Despite promising clinical studies, MSCs have not become
a universal therapeutic agent for the treatment of immune-
mediated disorders (38). In the main, this is due to concerns
over safety (transformation, undesired differentiation and
blood vessels occlusion), and the labor intensive, industrially
inapplicable procedure of preparation. It is known that
the beneficial effects of MSCs are largely mediated by
paracrine factors. Cell-free therapy based on mediators of
cell-cell communication, of which EVs are considered a
promising approach, are now considered to be a safer
alternative to entire stem cell therapy (17). MSCs derived
EVs offer compelling advantages over cell therapies in terms
of improved biodistribution, lower toxicity, higher stability in
the circulation and scalable production (39). Autologous and
allogeneic MSCs can be used for the production of EVs-based
therapeutics. The biocompatibility of autologous MSCs offers an
attractive therapeutic approach. However, from a manufacturing
perspective EVs derived from allogeneic MSCs can be obtained
in higher concentrations and isolated from MSCs obtained
from younger donors which are more biologically active and
potentially more readily available (40).

MESENCHYMAL STEM CELLS DERIVED
EXTRACELLULAR VESICLES

Originally it was thought the beneficial effects of MSCs based
therapy in tissue regeneration was due to the engraftment and
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differentiation of MSCs within damaged tissues. Subsequently, it
was found that relatively few transplanted MSCs engraft in host
tissues (41, 42). Together with evidence that media conditioned
by MSCs is sufficient to stimulate regeneration (43, 44), the
development of the paracrine hypothesis of the therapeutic
effects of MSCs was formed (45), the hypothesis that is now
widely accepted. Within the broad spectrum of factors secreted
by MSCs, EVs have been highlighted as a potential therapeutic
alternative to MSCs use (46).

EVs are bilipid membrane vesicles, encapsulating proteins
(including transcription factors, growth factors, and enzymes)
and genetic material (mRNA, siRNA, miRNA, ssDNA, dsDNA)
(Figure 1A) (5, 5, 6, 59). It was shown that most RNAs (>80%)
inside ofMSCs derived EVs are 28S, 18S, 5.8S, 5S ribosomal RNA,
alongside other small RNAs miRNA (44%), tRNA (47%) and Y
RNA (8%). MSCs derived EVs were enriched with miRNA which
regulate osteogenic differentiation: let-7a and c, mir-22, 199a,
196a, 199b, mir-27, 98, 100, 615, 125b, and 195 (Figure 1A) (60).
Moreover, evidence suggests mitochondria (61), ribosomes (62),
and proteasomes (63) might also be enclosed and transferred by
EVs to target cells. Knowledge of the biological cargo carried
by EVs is continually developing, the development of integrated
proteome, transcriptome, and lipidome databases—such as
Vesiclepedia, EVpedia, and Exocarta (http://www.microvesicles.
org/; http://evpedia.info; http://www.exocarta.org) now provide
current data on EVs from a variety of sources.

EVs are a heterogeneous population of vesicles, thought
to contain two predominant subtypes—exosomes (40–150 nm)
and microvesicles (400–2,000 nm) (17). Exosomes are vesicles
of endosomal origin formed by invagination of the endosomal
membrane inside of multi-vesicular bodies (MVBs) with
subsequent release of exosomes as a result of fusion of the
MVBs with the plasma membrane. Microvesicles are released
by budding directly from the plasma membrane (17). EVs
biogenesis and purification strategies have been described in
several published reviews (64).

As both subpopulations of EVs overlap in both size and
density, separation of the populations within a biological sample
is difficult. Therefore, EVs is used as collective descriptive term to
describe the population of small vesicles released bymost types of
cells including MSCs (17).

In addition to carrying nucleic acids, MSCs derived EVs
also reflect the protein characteristics of MSCs and contain
proteins, associated with the therapeutic effects of MSCs: surface
receptors (PDGFRB, EGFR, and PLAUR); signaling molecules
(RRAS/NRAS, MAPK1, GNA13/GNG12, CDC42, and VAV2);
cell adhesion molecules (CD29, CD44, CD73, FN1, EZR,
IQGAP1, CD47, integrins, and LGALS1/LGALS3); and MSCs-
associated antigens (CD9, CD63, CD81, CD109, CD151, CD248,
and CD276) (Figure 1A) (63, 65). Recent transcriptomic and
proteomic analysis of porcine MSCs derived EVs revealed that
EVs were enriched in mRNAs encoding transcription factors and
in proteins that support extracellular matrix remodeling, blood
coagulation, inflammation, and angiogenesis (66).

Evidence also demonstrates that the biological activity of EVs
is also similar to that of parental MSCs. EVs possess angiogenic,
anti-apoptotic, and immunomodulatory properties similar to

parental MSCs (67). It was shown that mouse MSCs derived
EVs are enriched with VEGF protein and miR-210-3p via which
they stimulate angiogenesis in ischemic limbs (68). In a rat
model of spinal cord injury, administration of MSCs derived EVs
resulted in a decrease in cellular apoptosis and inflammation
at the injured site. This was accompanied by a decrease in the
expression levels of proinflammatory cytokines (TNF-α and IL-
1β) and an increase in anti-inflammatory cytokines IL-10 (69).
In a model of traumatic acute lung injury (ALI) an increase
of the survival rate and suppression of inflammatory response
in experimental animals was also demonstrated (70). BM-MSCs
derived exosomes reduced infarct size and improved cardiac
function in rats after the acute myocardial infarction (71).

These results demonstrate the potential promise of MSCs
derived EVs as an alternative to whole cell therapy. EVs
efficiently mimic therapeutic effects of MSCs, whilst negating
some of the safety concerns related to the use of MSCs, such as
tumorigenicity and blood capillary embolism specific for MSCs
based therapy (72). Currently, due to the lack of a nucleus,
EVs do not fall into the category of advanced therapy medicinal
products (ATMP) according to the European Medicines Agency
(EMA) and the Food and Drug Administration (FDA) (73).
Unlike gene therapy and cells-based approaches, EVs are not
currently considered to be high-risk biologic drugs, but further
conventional demonstrations of safety and efficacy in preclinical
and clinical trials are essential (74).

IMMUNOMODULATORY ACTIVITY OF
EXTRACELLULAR VESICLES

MSCs derived EVs have shown immunosuppressive effects on
many types of immune cells: dendritic cells, T cells, B cells and
macrophages (75) (Figure 1B). It was shown that MSCs-derived
exosomes and microvesicles exert similar immunosuppressive
functions (72). However, it should be noticed that exosomes
were more efficient in suppressing inflammation in vivo in
inflammatory arthritis (76).

Reis et al. showed that EVs impaired antigen uptake
by DCs, inhibited DCs maturation, secretion of pro-
inflammatory cytokines IL-6 and IL-12p70 and increased
their production of anti-inflammatory cytokine TGF-β (77).
The immunomodulation was in part mediated by microRNAs
(miR-21-5p, miR-142-3p, miR-223-3p, and miR-126-3p) which
have known effects on DC maturation and were enriched in
MSCs derived EVs (77) (Figure 1B).

Immunoregulation of T-cell mediated responses is an
important tool to control autoimmune or inflammatory diseases.
Treatment of T-cells with MSC derived EVs has been shown to
result in amarked decrease in T-cell induced proliferation in vitro
and downregulation of IFN-γ and TNF-α (78). Khare et al. also
demonstrated the inhibitory effect of MSCs derived EVs on the
proliferation of activated PBMCs and isolated T and B cells (47)
(Figure 1B).

Studies conducted by Zhang et al., found that MSC derived
EVs induced an M2-like phenotype in monocytes, induced
T-cells to differentiate into regulatory T-cells and attenuated
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FIGURE 1 | Molecular content and immunomodulatory effects of MSCs derived EVs. (A) EVs have specific membrane markers and contain various proteins, lipids,

nucleic acids, and organelles. (B) MSCs derived EVs can induce different immunosuppressive effects and contribute to the immunological tolerance [for detailed

information, please refer to (47–58)].

immune activity in vivo enhancing the survival of allogenic skin
grafts in mice (79) (Figure 1B). Morrison et al. demonstrated
that MSC derived EVs promote an anti-inflammatory and highly
phagocytic macrophage phenotype through mitochondrial
delivery (80). Taken together, these studies suggest that MSCs
derived EVs retain the biological activity of the parental cells and
are promising immunosuppressive instrument.

A number of different animal models have been used to study

the immunomodulating activity of MSCs derived EVs (Table 1),

demonstrating immunological activity and modification of the

expression of both anti-inflammatory and pro-inflammatory
cytokines. The immunomodulatory effect of EVs derived from
human MSCs within animal model of pathogen/antigen induced
tissue injury demonstrated a range of effects, including increases
in survival in induced lung injury (81), decreased synovial
lymphocyte counts and lowered TNF-α mRNA expression
in synovitis joints (48), and increased regulatory T cells
following concanavalin A induced liver injury (82). Additional
preclinical studies in autoimmune uveoretinitis have shown
MSCs derived EVs reduce the infiltration of inflammatory T
cells in the eyes reducing the intensity of symptoms (83).
Moreover, Shigemoto-Kuroda et al. demonstrated that MSC
derived EVs suppressed Th1 and Th17 development, inhibited
activation of APCs and T cells, increased expression of the
immunosuppressive cytokine IL-10 and prevented development
of uveoretinitis (84). Table 1 summarizes some more recent
findings in the field of preclinical studies of EVs-MSCs based
therapy of immune-mediated disorders. As seen from Table 1

EVs demonstrate the immunosuppression activity regardless
of MSCs source. EVs derived from adipose-derived -MSCs,
amnion-derived MSCs, and umbilical cord-MSCs are as effective
as BM-MSCs (Table 1).

EVs circulate in body fluids disseminating throughout
the body. To direct the immunosuppressive action of EVs,
targeting strategies are actively being developed. Shamili et al.
conjugated a myelin specific aptamer to the exosome surface and
showed differences in the suppression of inflammatory response,
demyelination process and severity of multiple sclerosis (95).

Clinical case studies to investigate the therapeutic potential
of MSCs derived EVs have been conducted in patients with
steroid-refractory acute graft-vs.-host disease (acute GvHD) (96).
Treatment with EVs was reported to significantly improve GvHD
symptoms in a 22-years female patient with severe cutaneous and
intestinal GvHD, accompanied by a decrease in the level of IL-1b,
TNF-a, IFN-γ secreted by patient-derived PBMCs (96).

Phase II/III clinical study on 20 patients with chronic kidney
disease (CKD) showed that treatment with MSCs derived
EVs improved the glomerular filtration rate (eGFR), serum
creatinine level, blood urea and urinary albumin creatinine ratio
(UACR) (97).

Despite these promising clinical studies, there are still
limitations that need to be overcome in order to develop EVs-
based medicines: (1) establishment of a recommended isolation
protocol for large-scale preparation, purification and storage of
EVs; (2) standardized protocols of EVs quantification, molecular,
and physical EV characterization; and (3) defined quality control
(QC) criteria for clinical use (74).

APPROACHES FOR INCREASING PLASMA
MEMBRANE-DERIVED VESICLES YIELD

Limited yield and labor intensive procedures for EV isolation
has made large-scale production by pharmaceutical companies
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TABLE 1 | Application of extracellular vesicles of mesenchymal stem cells for the therapy of immune-mediated diseases.

Source of EVs Model of disease Observed effect References

Inflammation associated diseases

Rat BM-MSCs Cardiac ischemia Inhibition of proliferation of T-cells in vitro, reduction of infarct size. (85)

Pig AD-MSCs Metabolic syndrome and renal artery

stenosis

Attenuation of renal inflammation and fibrosis, improving of medullary

oxygenation, renal blood flow, and glomerular filtration rate.

(86)

Human BM-MSCs Local ischemic stroke (rat model) Immune suppression 1 week after the injury, regeneration of blood vessels

and nervous tissues.

(87)

Human BM-MSCs Preterm brain injury (rat model) Amelioration of inflammation, neuronal degeneration, reduction of

microgliosis and prevention of astrogliosis.

(88)

Human BM-MSCs Acute spinal cord injury Attenuation of microglia activation, improving of locomotor recovery and

mechanical sensitivity.

(89)

Mouse BM-MSC Hepatic ischemia-reperfusion injury Reduction of tissue necrosis, cells apoptosis, serum aminotransferase

levels, expression of inflammatory cytokines (IL-6).

(90)

Rat amnion-derived MSCs Liver fibrosis Decrease of expression of inflammatory cytokines (TNF-α, Il-1β, Il-6,

TGF-β), decrease of fiber accumulation, activation of Kupffer cells, and

hepatic stellate cell.

(85)

Autoimmune diseases

Human AD-MSCs Multiple sclerosis (murine

encephalomyelitis virus induced

demyelinization)

Immunomodulation, decrease of inflammatory infiltrates, reducing of brain

atrophy, increase of cell proliferation in the subventricular zone.

(89)

Mouse AD-MSCs Autoimmune encephalomyelitis Reduction of the severity of EAE by inhibiting of T cells extravasation in the

inflamed central nervous system after the preventive administration of EVs.

(91)

Human BM-MSCs Type 1 diabetes (mouse model) Delay of the onset of T1D in mice, inhibition of activation of

antigen-presenting cells and suppression of development of T helper 1

(Th1) and Th17 cells.

(84)

Mouse BM-MSCs Rheumatoid arthritis Inhibition of T lymphocyte proliferation, decrease of inflammation. (76)

Human AD-MSCs Atopic dermatitis (mouse model) Reduction of symptoms, the levels of serum IgE, the number of

eosinophils, infiltration of mast cells, CD86+, and CD206+ cells in skin

lesions. Reduction of expression of inflammatory cytokines (IL-4, IL-23,

IL-31 and TNF-α).

(92)

Transplant rejection

Human Umbilical Cord-MSCs aGVHD (mouse model) Decrease of the symptoms, reduction of the mortality of the recipient mice,

number of CD8+ T cells, reduction of serum levels of IL-2, TNF-α, IFN-γ

and increase of the level of IL-10.

(93)

Human BM-MSCs aGVHD (mouse model) Prolongation of the survival of mice with aGVHD and reduction of the

pathologic damage in organs, suppression of CD4+ and CD8+ T cells,

suppression of the functional differentiation of T cells from a naive to an

effector phenotype.

(94)

BM-MSCs, bone marrow derived MSCs; AD-MSCs, adipose derived MSCs; TNF-α, tumor necrosis factor alpha; TGF-β, Transforming growth factor beta; IFN-γ , Interferon gamma;

Th1, T helper cells; Th17, T helper 17 pro-inflammatory cells; EAE, encephalomyelitis; T1D, type 1 diabetes; aGVHD, acute graft-vs.-host disease.

problematic and restrains the wider use of EVs in preclinical
and clinical applications. The amount of the MSCs derived EVs
isolated in the first clinical case study from supernatant of 4 ×

107 MSCs was 1.3–3.5 × 1010 particles or 0.5–1.6mg (96). This
dosage of EVs was defined as 1 unit and the patient received 4
units in total (96). To increase the yield of vesicles from MSCs,
Mendt et al. suggested the use of bioreactor cultures of BM-MSCs
(98). The authors were able to get 9.8–15.6 × 1012 exosomes per
bioreactor run (98), a concentration sufficient for the treatment
of one patient using the original clinical case protocol (97).

Further investigations of the biochemical and biophysical
properties of membrane proteins and membrane organization
are leading to novel approaches and continued improvements
in current approaches for large scale vesicle production. Del
Piccolo et al. induced the release of vesicles from CHO cells using
“vesiculation buffer” (23). Cells were rinsed with a hypotonic

buffer which induced cell swelling, then incubated the cells in a
hypertonic solution. This osmotic buffer did not rupture the cells
but stressed them sufficiently to increase the release of vesicles
into solution (23). However, it remains to be determined how
the increase in vesicle production alters the cargo and biological
function of the resulting EVs.

Wu et al. produced vesicles from human retinal pigment
epithelium (ARPE-19) cells by extruding the cell suspension
through polycarbonate filter with 1µm or 2 µm-pore size
(20). The resulting population of vesicles consisted of two
population—one with an average size 0.2 ± 0.1µm and the
smaller in number −0.8 ± 0.5µm (20). A similar approach
was used to produce vesicles from bone marrow derived MSCs
via extrusion through a polycarbonate membrane with 3µm
pores. The authors were able to detect the functional active
mitochondria inside the plasma membrane vesicles (21).
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Plasma membrane-derived vesicles may be promising vector
for the delivery of therapeutics. However, due to sporadic,
unselective packing of cytoplasmic content into the plasma
membrane-derived vesicles, these vesicles are not equal to the
natural EVs, and the biological activity of such vesicles remains
unknown and needs to be verified.

A more moderate approach to increase membrane vesicle
production is treatment of cells with cytochalasin B (99).
Cytochalasin B is a drug that causes disorganization of actin
cytoskeleton (100). Treatment of cells with cytochalasin B
resemble the disorganization of actin cytoskeleton by activated
protease calpain during the natural process of microvesicle
release (17, 101). Up to now EVs have been derived from
HEK293 (99, 102, 103), 3T3 fibroblast (102), HUVECs
(104), MDCKII-MDR1 (105), SH-SY5Y (22), and PC3 cells
(106). Cytochalasin B-induced membrane vesicle (CIMVs)
were used as vectors for nanoparticles and drugs delivery (102),
decreasing the toxicity of chemotherapy in vivo by encapsulating
doxorubicin (104). Cytochalasin B application to human cells
promotes an increase in membrane vesicles yield by >100
fold (17). It was calculated that 17 ± 6% of the cell membrane
transformed to CIMVs (99). The CIMVs released have a
diameter of 100–1,000 nm (96%) which is comparable with
naturally occurring EVs (22). Our studies of CIMVs have shown
that their uptake by target cells is via heterophilic interaction of
CIMVs membrane receptors with the surface proteins of target
cells, this has a greater impact on CIMVs entry into target cells
(106). Moreover, the biological activity of CIMVs is sufficient
to stimulate capillary tube formation in vitro and angiogenesis
in vivo by delivering growth factors (22). The use of Cytochalasin
B to induced membrane vesicles (CIMVs) has advantages over
endogenous EV production, including easier procedure of
isolation, increased yield, more homogeneous composition due
to the unselective mechanism of cytoplasmic content enclosing.
The advantages of CIMVs production together with the evidence
of retention of biological activity (22) strongly indicates that
CIMVs may represent the next step toward the clinical use of
EVs as therapeutic tools. However, the full immunomodulating
properties of MSCs derived CIMVs remains to be
fully evaluated.

CONCLUSION

MSCs derived EVs retain the biological activity of parental MSCs
and demonstrate a similar therapeutic potential. EVs stimulate
the viability and proliferation of target cells and modulate
the immune microenvironment. Therefore, the EVs of MSCs
are potential therapeutic tools, which have advantages over
cell therapy in terms of safety, ease of storage/transportation
and clinical use. However, one of the major limitations of
clinical adaption of EVs is the poor scalability of production.
However, improved understanding of the physical properties
of EVs and the mechanism of their biogenesis is leading to
improved approaches to increase yield and uniformity of their
production. Taken together, these data suggest that MSC derived
EVs are a promising therapeutic tool for the treatment of
immune-mediated disorders, including autoimmune diseases.
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